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SUMMARY

This report reviews the verification tool m-EVES (Environment for Verifying and
Evaluating Software). It describes the two main components of m-EVES: the language,
m-Verdi and the theorem prover, m-NEVER. The main purpose of this report is to describe
how problems are attacked in m-EVES, and draw conclusions about the strengths and
weaknesses of m-Verdi and m-NEVER. Where appropriate, comparisons are made with
other program verification and theorem proving environments.
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1 INTRODUCTION

m-EVES (Environment for Verifying and Evaluating Software) is an environment for the develop-
ment of formally verified software. m-EVES has two main components: a language, m-Verdi, and
a theorem prover, m-NEVER (Not the EVES Rewriter). The purpose of this report is to introduce
and give some insight into m-Verdi and m-NEVER, explain how to use them, and draw some
conclusions about their strengths and weaknesses. Where appropriate, comparisons have been
drawn with similar features from some other tools.

m-Verdi is a combined specification and programming language. m-Verdi is similar in style
and expressive ability to Pascal, but with extensions which allow specification and verification by
including assertions, pre and post conditions, and invariants and termination conditions on loops.
The specification facilities of m-Verdi are essentially those of first order predicate calculus.

The m-NEVER theorem prover is a powerful theorem proving tool and in many ways is
similar to the Boyer-Moore [1] theorem prover. Perhaps the most significant difference between
m-NEVER and Boyer-Moore is that m-NEVER allows a degree of user interaction to guide the
proof as it progresses, while Boyer-Moore is batch oriented.

A typical session with m-EVES is commenced using the ECL (EVES Command Language) to
make declarations in m-Verdi of various items such as types, variables, procedures or functions.
The user may also make declarations of axioms and inference rules for use by m-NEVER. These
declarations give rise to various proof obligations which the user proves with m-NEVER by issuing
commands in ECL. Although m-Verdi and m-NEVER are two distinct components, a user views
the system as a unified whole, with ECL the common interface.

The following font convention is observed throughout this document. Normal text is set
in roman. Examples drawn from m-EVES are set in typewriter. Examples drawn from other
languages and systems are set in sans-serif. m-Verdi key words, and keywords drawn from
other language examples will be emboldened, that is in bold typewriter and bold sans-serif
respectively. In any sample interactions with any system that portion of the interaction attributed
to the user will be underlined. In examples, words in italics denote generic values, for example,
the word “name” in “"name"” stands for any name.

2 m-VERDI

The version of m-Verdi used by the m-EVES system is a subset of the language as described in
the papers A Description of m-Verdi [2] and An m-Verdi User’s Guide [5]. For example, packages
and environments are not yet supported by m-EVES. Unless otherwise stated, this report will use
“m-Verdi” to mean the language supported by m-EVES version 4.

The m-Verdi language was designed specifically for use with the m-EVES software verification
effort. Unlike other languages designed for use in verification projects, like MALPAS Intermediate
Language (IL) [15], m-Verdi is intended as a programming language in its own right rather than
an intermediate language into which programs in existing languages are translated. There is a
compiler available for m-Verdi (the complete version), although it is not part of m-EVES.

Examination of m-Verdi suggests that it was designed to have a simple semantics, which
is easily formally manipulated, while maintaining a high degree of expressiveness. In instances
where the m-Verdi language seems unusual it is invariably the case that the semantics of the
language construct in question is demonstrably simpler than that of the more traditional construct.

The first thing that a new user of m-Verdi will notice is the almost exclusive use of prefix
notation in expressions, and the use of words rather than symbols to denote common mathematical
functions. For example the traditional Pascal expression: 1 — 2 is rendered as minus (1, 2) in
m-Verdi. The only exceptions to this rule are the “equals” and “not-equals” functions: = and <>.
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Second, a new user of m-Verdi will notice the almost total lack of polymorphic functions. Users
of traditional procedural programming languages, while not being able to write polymorphic
functions of their own, are familiar with their use; often without realising it. For example, the
addition function in Pascal works for both integers and real numbers. Even this limited degree of
polymorphism is not supported in m-Verdi. m-Verdi has two numeric types, ordinal and integer,
each of which has its own less-or-equal function, namely: ordinal’le and int’le. Again the
only exceptions to this rule are the equals and not-equals functions. Perhaps the most striking
example of these two effects combined is in array indexing. In a language like Pascal, array
indexing could be considered to be the work of an infix polymorphic function _ [ _ ] which
takes two arguments, an array and an index. In m-Verdi the Pascal expression: a[i] is written as
atype’extract(a, i), where atype is the type of the array a, and atype’ extract is the
indexing function for arrays of type atype.

2.1 Declarations

2.1.1 Type Declarations

m-Verdi supports the following standard types: integer (int), boolean (bool), ordinal (ordinal)
and character (char). m-Verdi allows the declaration of array types, record types, enumeration
types and a generalised version of subrange types called restriction types. Defining a type t also
results in the declaration of the variable t’dummy of that type.

By using a restriction type declaration, a new type t may be defined as a restriction of a larger
type, T, by giving a predicate on T which defines the subset t. For example, the natural numbers
could be defined as a restriction on the integers such that the naturals are those integers greater
than or equal to zero. Restriction types have a proof obligation that the type declared is nonempty.
Making use of restriction types in procedure declarations complicates their proof obligations as the
user is required to show that variables of a restriction type satisfy the type’s defining predicate. It
is often the case that the practical disadvantages of using restriction types outweigh the advantages
inherent in their conceptual beauty. Below is the restriction type declaration of the natural numbers:

type Nat = those int’dummy : int’le(0, int’dummy)

Certain types, namely ordinals and restriction types, are nonexecutable types. Any construct
making use of a nonexecutable type will be nonexecutable. Nonexecutable constructs will not be
compiled by the m-Verdi compiler.

Array declarations give rise to a proof obligation that the array declared is not empty. After
entering an array declaration in m-EVES, the proof obligation that the array is not empty will be
displayed, and the user has the opportunity to use m-NEVER to prove the obligation.

Types may also be declared which are not associated with any particular structure. Such
declarations are called type stubs. It should be noted that once a type has been declared as a stub
it cannot later be refined to a particular structure. Below is an example of a type stub declaration:

type atype

2.1.2 Constant Declarations

Typed constants may be defined. These constants may or may not have a value associated with
them. Constant declarations which do not associate a value with the constant are called constant
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stubs. Constant stubs like type stubs may not later be refined to have a particular value. The
following statements define two constants; three, an integer constant equal to 3, and anint, an
integer constant with no defined value:

const three : Int = plus(l, 2)
const anint : Int

2.1.3 Variable Declarations

The concept of a variable declaration in m-Verdi is markedly different from that in traditional
programming languages. A variable declaration in m-Verdi does not create a program variable
with an associated state; indeed, there are no global variables in m-Verdi. A variable declaration
in m-Verdi adds the variable symbol to the theory. Effectively, a variable declaration associates
a type with a variable name. The task traditionally associated with variable declarations is done
by wvariable bindings. The distinction between declaring a variable and allocating storage for it is
made because there are a great many uses for variables in m-Verdi, including specifications and
axioms, which require no physical storage.

Another difference between m-Verdi and more traditional languages is that a variable decla-
ration declares not just one variable, but a family of variables. For example, declaring the variable
v effectively declares the variable family: v, v/ 0, v’ 1, v’ 2, ... Below the variable b is declared
as a boolean:

var b : Bool

2.1.4 Variable Bindings

Once declared, a variable may be used in nonexecutable contexts, like specifications and axiom
declarations. However, before being used in an executable portion of an m-Verdi program, a
variable must be given a binding. A variable may be bound in one of three modes: 1var, pvar
and mvar.

An lvar or logical variable binding associates an immutable value with a variable for the
duration of its scope. In this respect, it is much like a constant declaration in a traditional
programming language.

A pvar or program variable binding is much like a traditional variable declaration. The variable
denotes its value in the current state and assignment statement may be used to change that value.

An mvar or machine variable binding form part of m-Verdi’s support for modelling the
architecture of the target machine. Machine variables are used for modelling special registers
which do not behave like ordinary variables. For example, it is common for communications chips
to contain a register which places the value stored in it on the output port, but when read returns
the value present on the input port. A machine variable can only be modified or examined by
procedures which the user specifies so as to model the behaviour of the physical register.

A variable may be given a binding either in the definition of a procedure’s formal parameters,
or at the start of a block.

Within a procedure, 1var bound parameters behave like constants which have their values
passed to them by the corresponding actual parameters; pvar bound parameters have a call by
reference semantics, denoting the corresponding actual parameter. To avoid the complications of
call by reference semantics, aliasing is not permitted in m-Verdi procedure calls.
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Bindings at the beginning of a block may include an optional initialisation. Variables given
lvar and pvar bindings at the beginning of a block behave, respectively, like traditional constants
and variables within that block.

Examples of bindings may be found in sections 2.1.6 and 2.2.9 on procedure declarations and
blocks.

2.1.5 Function Declarations

Functions in m-Verdi are essentially named, parameterised expressions, much like the functions of
a functional programming language. There is no equivalent to the Pascal style of function which
is like a procedure that returns a value.

A function need not have a body; this kind of function declaration is known as a function
stub. A function stub declaration only requires the function’s name, its formal parameters and
the type which it returns. Function stubs are useful for developing and reasoning about algebraic
theories. For example, a user may declare type stubs elt and eltlist for element and element
list; and function stubs cons and head to prepend an element to a list and to take the head of
a list respectively. The user may then assert that taking the head of a list that has just had an
element prepended to it returns that element. In such a way abstract theories of lists and sets and
the like may be built up with m-Verdi and m-NEVER. Like other forms of stub, function stubs
may not be given definitions later in the program.

Functions may be recursive, but not mutually recursive. Recursive functions must contain an
expression, called the measure, which represents the size of the problem to be solved. Generally,
termination may be established by showing that the measure decreases, according to some well
founded ordering, on successive evaluations. However, in m-Verdi the well founded ordering is
always less-than on the ordinal numbers. This restriction detracts from the expressiveness of the
language as the size of many problems is not most naturally expressed in terms of the ordinals.
The difficulty of showing termination of mutually recursive functions was probably considered too
great to justify their inclusion in the language. Recursively defined functions are not executable,
and are merely used for specification purposes. The stack usage of such functions would make it
very difficult to check their storage usage.

Below is an example of a function declaration for calculating the factorial of an integer, i.

var i : Int
function factorial(i) : Int =
pre int’ge (i, 0)
measure ordinal’val(i)
begin
if 1 = 0 then
1
else
times (i, factorial(minus(i, 1)))
end if
end factorial

2.1.6 Procedure Declarations

Procedure declarations in m-Verdi are similar to those in Pascal, the main differences being that pre
and post-conditions given in predicate logic may be included in an m-Verdi procedure definition.
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m-Verdi procedure definitions may also include an initial clause to initialise various logical variables
to values in the state before the procedure executes. Unlike functions, m-Verdi procedures may
not be recursively defined.

Procedure Stubs are defined by omitting the block containing the procedure’s code. m-EVES
can still reason about software containing procedure stubs by using the pre and post conditions of
the stubs. Procedure stubs allow users to suppose they have a set of procedures which perform
certain functions, then write and verify software based around those procedures, without needing
to first code and verify the procedures. Procedure stubs may not be given their defining code
later in the same program.

Below is an example of a definition of a procedure to search for a target within an array a.
procedure search(lvar a, lvar target, pvar position) =
pre some i : and(int’ge(i, atype’lowbound),
int’ge (atype’highbound, i),
atype’extract(a, i) = target)
post and(int’ge(position, atype’lowbound),
int’ge (atype’highbound, position),

atype’extract(a, position) = target)
begin

end search

2.2 Commands

The m-Verdi language offers a range of commands similar to that found in most small procedural
languages.

2.2.1 abort

The abort command is used for terminating program execution. An abort command may have
a condition. An example of abort follows:

abort when int’1t (i, 0)

2.2.2 exit

The exit command, with its optional condition, is used to exit loops in a manner similar to C’s
break command. A usage of exit appears as an example below:

exit when i = 0
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2.2.3 return

The return command is used to return prematurely from a procedure invocation. The syntax
of the return command is the same as the exit and abort commands, including the optional
condition. A typical usage of retuzrn looks like the one below:

return whaen i = 0

2.2.4 Annotation

Annotations are used to make assertions at various points throughout a procedure. Annotations
affect a procedure’s proof obligation. The user is required to prove that the precondition will imply
the correctness of the annotation, and that together they will imply the postcondition. Annotations
are made with the note command, an example of which follows:

note gcd(i, 3j) = gcd(i’0, j’0)

2.2.5 Assignment

m-Verdi assignments are much like those of Pascal, the only exception being the assignment of
values to elements of structured variables. In languages like Pascal individual elements within
structured variables may be assigned values directly using the same notation to identify the element
as is used to extract its value in an expression. In m-Verdi values are immutable. They may only
be assigned to whole variables; to update a particular element of a structured variable one assigns
to the variable the result of some function which returns the variable updated in the way desired.
As an example, the m-Verdi equivalent of the Pascal a[i] := e is shown below:

a := atype’with(a, i, e)

Users of m-Verdi are free to use the more traditional notation: a (1) := e. However, this notation
is regarded as a shorthand and is immediately translated into the form shown above.

2.2.6 Conditional

Conditional statements in m-Verdi are similar to those in other procedural programming languages.
The example below shows the usage of m-Verdi’s conditional statement:

if int’gt(i, j) then
g := gcd{minus(i, Jj), I
elseif i = j then

g := 1
else

g := gcd(i, minus(j, i))
end if
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2.2.7 Iterative

The iterative construct of m-Verdi differs significantly from the iterative constructs of similar
procedural languages. While many languages support several different kinds of loops, commonly
while, repeat and for, m-Verdi supports only one. The m-Verdi loop command is basically an
infinite loop. The only way to leave the loop is with an exit command.

m-Verdi loops are augmented with invariants to help prove correctness. m-Verdi loops, like
recursive functions, also may be augmented with measures to establish termination. Loops without
explicit measure conditions are given the constant expression ordinal’ first ( the smallest
ordinal number ) as a measure. This constant expression cannot be shown to decrease, and
therefore such loops cannot be proven correct.

The loop from a procedure for calculating the greatest common divisor of two numbers is
given below as an example (note that ordinal’val, which appears in the measure, is a type
casting function from nonnegative integers to ordinals):

loop
invariant and{(int’gt (i, 0),
int’gt(j, 0),
ged(i, J) = gecd(i’0, 3’0))
measure ordinal’val(plus(i, 3))
exit when i = j

if int’1t (i, j) then
3 minus(j, i)
else
i := minus(i, 3j)
end if
end loop

2.2.8 Procedure Invocation

Procedure invocation uses the standard notation. As an example, an invocation of the procedure
search defined above is given below:

search(a, 1, 1)

2.2.9 block

The block command is used for creating a local scope into which variables may be introduced

and a sequence of commands executed, similar to the compound statement in C. An example of
a block is shown below:
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block
lvar i =1
lvar j := 2
pvar k

k (=0
end block

2.3 Expressions

Expressions in m-Verdi are too varied to be treated in a case-by-case manner as was done with
commands. This section examines only differences between m-Verdi expressions and expressions
of traditional procedural programming languages like Pascal. The most obvious difference is in
syntactic style, but there are some differences which run deeper than appearances.

2.3.1 Quantification

Existential and universal quantification are available as m-Verdi expressions. Such expressions are
not executable and may only usefully appear within pre and post-conditions, and invariants. The
quantifiers conform to the following syntactic template, where P[v;, v,,...] is a boolean valued
expression on v;, vy,...

some v;, Vo,.. : Plvy, vo,...]

all vy, vo,.. 1 Plvy, vo,..]

2.3.2 Structured Results

Unlike Pascal and many other procedural languages, functions in m-Verdi may return structured
values such as arrays and records as their results.

2.3.3 Conditional Expressions

m-Verdi also allows for conditional expressions which have a similar syntax to the conditional
command described above. The factorial function declared previously contained the following
conditional expression:
if i =0 then
1
else
times (i, factorial (minus (i, 1}))
end if

2.4 Machine Support

Critical software is frequently found running on small embedded systems where its operation is
intimately intertwined with the hardware. This section describes m-Verdi’s support for modelling
the way in which programs will run on their target hardware. Concepts introduced are avoided in
other parts of the report as it is challenging enough to prove a nontrivial algorithm correct without
proving that it will run correctly on your chosen hardware.
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Registers on micro chips, while essentially being variables, cannot be manipulated in the same
way as ordinary variables, and should not be modelled as such. For example, it is common for a
register to reset its value to zero after it has been read. m-Verdi includes a facility for modelling
registers called machine variables. A machine variable can only be manipulated by procedures which
the user declares to model the register’s behavior.

m-Verdi includes a facility for modelling imperfect machine arithmetic. For example the ad-
dition function on integers commonly used in mathematics (the ideal version of the function) is not
the same as the addition function implemented in programming languages (a non-ideal approxima-
tion to the ideal function). Consider a machine which represents integers by 2s complement 16 bit
words (possibly the most common representation used by the small computers found in embedded
systems). On such a machine integers in the range —32768 to +32767 may be represented. The
addition function in a programming language is only defined if its arguments and their sum are
representable integers. m-Verdi handles this by making a distinction between executable functions
and non-executable functions. Executable functions are those functions which are to run on the
machine. Non-executable functions are ideal functions which either have no executable version
or for which the corresponding executable versions are non-ideal. Non-executable functions are
intended for use in specification. For example, one could specify a procedure to add two num-
bers using the executable addition function and prove that so long as the arguments fell within
a certain range the procedure adds the numbers correctly (according to the ideal function). Non-
executable functions may also be used within procedures. However, such a procedure will then
be deemed non-executable. For the purposes of this report only ideal functions, whether executable
or non-executable, will be used.

Although m-Verdi is capable of modelling machine registers and machine arithmetic, it has
not attempted to address the remaining question of storage exhaustion. It is not possible to place
restrictions on the size or number of variables allocated or to put an upper bound on the number
of procedure and function calls active at any one time, and hence on the runtime stack size. This
means that in order to ensure that a program will run correctly it is necessary to manually check
that storage allocation cannot exceed the target hardware’s memory capacity.

2.5 Conclusions

2.5.1 Strengths of m-Verdi

Although poor in expressiveness when compared to languages like Z [16] and VDM [8], m-Verdi’s
specification ability is relatively good when contrasted with a language such as MALPAS IL which
does not support quantification.

The simple semantics of m-Verdi means that programs written in m-Verdi have relatively
simple verification conditions and hence are ideal for use in a verification environment. This
simple semantics and its formal definition are the major strengths of m-Verdi — particularly when
compared with languages like MALPAS IL which have no formally defined semantics. A simple
program semantics also makes a programming language easy for people to reason about, thereby
increasing the probability that programs written in the language will be correct in the first place.

Despite its simple semantics m-Verdi does have some programming facilities not commonly
found in procedural programming languages. In particular m-Verdi functions may return struc-
tured results like arrays and records and m-Verdi allows the use of conditional i.e. if  then
_ else _ end if expressions.

m-Verdi’s inclusion of measures in the definition of recursive functions and loops allows proofs
of program termination, and hence total correctness, to be constructed. Some existing systems, such
as MALPAS and Gypsy [6], do not provide direct support for proofs of total correctness.
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m-Verdi’s variable family concept helps theorem provers to generate new variable names
which show their relationship to existing variables. For example, if a predicate contains a quantified
variable i and m-NEVER needs to create a second instance of the expression containing i it can
call the variable equivalent to i in the new predicate i’ 1. Some systems which automatically
generate variables give them names like genvar1234, which mean little to the user.

The inclusion of various facilities in m-Verdi for modelling a program’s target hardware allows,
in theory at least, proofs of program correctness which not only show that the program’s algorithm
is correct, but that, excluding the possibility of memory exhaustion, it will execute correctly on its
target hardware. This is an important question not directly addressed by other verification tools.
In particular the common assumption that machine arithmetic is ideal makes it difficult for some
verification systems to discover overflow errors, which can have catastrophic effects.

2.5.2 Weaknesses of m-Verdi

The most obvious weakness of m-Verdi is its visual appearance. Although the look and feel of the
language may not seem, at first, of fundamental significance to the value of the language within
a verification context, it is surprisingly relevant. Use of m-EVES requires the ability to read and
understand predicates. Typically, a user would scan the predicate being manipulated, issue a proof
command and then look at the resulting predicate to ascertain what changes have been made. If
the language in which the predicates are expressed is not easy to read then this process is made
all the more difficult.

Successful use of m-EVES is greatly assisted by a degree of experience with formal systems
and procedural programming. People with such experience will feel more at home with a system
which uses a notation with which they are familiar. For example, mathematicians used to working
with a notation which allows predicates to be expressed in a form like:

Vici+d4=5=>i=1
will prefer not to express themselves in m-Verdi, where the expression above would be rendered:

all i : implies(plus(i, 4) =5, i = 1)

Although a Lisp-like notation, as used by m-Verdj, is familiar to some programmers, those
with a purely procedural background will find m-Verdi aesthetically unappealing.

However, the main problem with m-Verdi is its verbosity. The example above is rather kind
to m-Verdi in this respect. Typically an expression when written in m-Verdi is more than twice as
big as it would appear in more traditional notation. The difficulty of reading and understanding
an expression is greatly increased once the expression spans more than one physical page. When
using m-EVES to manipulate large predicates it is usual to obtain a hard copy of the original
predicate, perform a planned series of manipulations, get a hard copy of the resulting predicate
and compare the two — a process which can take quite some time. The verbosity of m-Verdi has
a great effect on the way a user interacts with m-EVES. Typically much time and effort is devoted
to ensuring that the predicate being manipulated remains small enough to fit on a page — any
manipulations which result in a large increase in the size of the predicate being discarded as too
difficult to work with.

There is another problem with m-Verdi of a more serious nature than its appearance. The
seemingly intentional simplicity of the language has resulted in too significant a loss in expressive-
ness to be ignored. In particular the lack of higher order notation and polymorphic typing limit
the expressiveness and generality of the language.
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As a language for use in a verification context m-Verdi must be suitable for both programming
and specification. The purpose of specification is to express the problem in as abstract a manner
as possible in order to avoid complexity and hence confusion in the specification. One of the
major tools for use against complexity in specifications is higher order notation. m-Verdi does
not support higher order notation. Higher order notation is not impossible for theorem proving
systems to work with: both HOL [7] and Gypsy allow its use.

m-Verdi does not support polymorphism. This means that it is not possible to use m-EVES
to develop general theories. For example, a user cannot develop a general theory of lists. Rather,
several theories must be developed, one for each type of list. The lack of polymorphism results in
the frequent duplication of both human and machine proving effort. Furthermore, an inability to
develop theories of a general nature is an effective block to the development of libraries of useful
theories which could increase the productivity of the tool.

Generality ought to be an important concept in software verification. At present full verifi-
cation is considered too expensive for use in all but the most safety critical applications. This is
frequently attributed solely to the difficulty of using theorem provers to prove software correct.
Another contributing factor is that languages like m-Verdi do not allow the verification of pro-
grams which solve a generic class of problems. Consider a typical software project. As part of the
project’s design, a module for handling lists of customer orders has been identified. Within this
module there is to be a procedure to search the list and return all orders for a particular product.
Verification of such a module is clearly uneconomic. However if the design team were to think
in terms of a module for handling lists of anything, and in particular a procedure within that
module which searches the list, returning all those elements which satisfy a given predicate, then
they would have a module so general that it could used in almost all of their company’s software
projects. The solution to the general problem is no more complex than the solution to the original,
more specific, problem. It probably makes good economic sense to verify a module implementing
the generic design because of its potential for reuse. m-Verdi could not be used to implement the
generic solution. In order to allow m-Verdi procedures to manipulate lists of anything m-Verdi
ought to have polymorphic typing. In order for a procedure in m-Verdi to pick out those elements
of a list satisfying a given predicate m-Verdi would need to allow functions as first class objects;
thus m-Verdi also ought to have higher order notation.

It seems odd that recursive procedures are not allowed in m-Verdi. It could be argued that
the inclusion of recursive procedures makes it difficult to reason about the storage consumption
of a program. However, this could be accommodated by treating recursive procedures as non-
executable, like recursive functions. There are many cases when a user would like to use m-EVES
to reason about an algorithm without caring if that algorithm will execute correctly on a machine
with finite resources. Disallowing recursive procedures arbitrarily restricts the class of problems
to which m-EVES may be applied. Other systems, like MALPAS and Gypsy, do not impose this
restriction.

The inability to refine stub declarations is both an inconvenience and a hindrance to the
development of a useful system of libraries. It should be possible, for example, to define
algebraically, using type and function stubs and axioms, a theory of sets; and later provide a
model for that theory by instantiating the type and function stubs with definitions and proving
the axioms. In this way the example set theory could potentially be modelled as sets represented
by arrays or lists or by some other means. A library of theories could then be developed, each
with several models. MALPAS provides an explicit mechanism for refining abstract types, which
are its equivalent to type stubs.

One final problem with m-Verdi is simply that it is m-Verdi, rather than some secure subset
of an existing popular language like Pascal or Ada. In order to prove assertions about any existing

UNCLASSIFIED 11



ERL-0545-RR UNCLASSIFIED

software with m-EVES, translators will first need to be written to translate the software into m-
Verdi, as is done with systems in which the input language cannot be executed, like MALPAS.
This of course raises the issue of whether the translators need to be verified.

3 m-NEVER

m-NEVER is the interactive theorem proving component of the m-EVES system. m-NEVER is a
powerful theorem prover. There are very few commands available to the user, and, although it
only takes a short time for a new user to learn each of these commands, it can require a high level
of experience to use them to solve nontrivial problems.

Typically the user wishes to prove the correctness of a program. Declarations from the
program are entered one at a time. Each declaration’s proof obligation becomes the current formula.
The user may prove the current formula, or may move on to the next declaration. Some simple
declarations, like those of unstructured variables, have no proof obligation.

In order to successfully discharge some proof obligations it may be necessary to make
further declarations for m-NEVER's use, introducing facts, rewrite rules and forward rules. These
declarations, described below, will have proof obligations of their own.

3.1 Declarations

Just as the distinction between m-Verdi and m-NEVER is blurred to the user, so is the distinction
between the program and its proof. For example, if a user wished to use a variable in a rule
definition then that variable would first need to be declared in the same way as if for use in
a procedure declaration. All the forms of definition described in the section on m-Verdi above
are still relevant to m-NEVER, in addition to some new forms of definition. Strictly speaking,
the syntax of these definitions is defined by m-Verdi, but as they are relevant only for use with
m-NEVER they will be described here.

3.1.1 Facts

Facts are used to give names to axioms that a user may wish to use while proving a theorem. The
declaration of a fact gives rise to a proof obligation that the axiom is in fact true. Users need not
immediately discharge proof obligations. Indeed, in some cases, this may never be possible.

A fact may be parameterised, in which case the fact is implicitly universally quantified over
those variables by which it is parameterised. In general, parameterised facts are used in preference
to explicitly quantifying the variables, because the commands available in m-NEVER allow better
use to be made of parameterised facts.

Below is an typical fact definition:

axiom gcdsym(i, j) =

begin
implies (not(and(i = 0,
j = O)I
ged(i, 3j) = ged(j, 1))
end gcdsym

3.1.2 Rewrite Rules

Rewrite rules are parameterised axioms used by m-NEVER's rewriting tactic. The body of a
rewrite rule must take the following form:
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implies (expression, expression = expression)

The rewriting tactic searches the current formula for expressions which match the left hand
side of the equality in a rewrite rule. Matching is performed by instantiating the parameters of
the rule. If an expression is matched, and m-NEVER can simplify the condition of the implication
in the rule to true, then that expression will be replaced by the right hand side of the equality.

When the body of a rewrite rules is of the form:
implies (true, expression = expression)
it may be abbreviated to: |
expression = expression,

Such rules are known as unconditional rewrite rules, while other rewrite rules are known as
conditional rewrite rules. Similarly, if the equality expression in a rewrite rules is of the form:

expression = true,
it may be abbreviated to:
expression,

A typical rewrite rule looks something like the one below:

axiom gcdsub (i, J) =

rule
begin
implies (not(and(i = 0,
j = O))I
ged{(minus (i, 3j), i) = gcd(i, 3J}))

end gcdsub

The interaction below is an example of the use of this rewrite rule:
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if x = 0 then
else

écd(minus(x, y), X)
end if

! rewrite;

Which simplifies
when rewriting with ... GCDSUB ... to

if x = 0 then

else

gcd(x, y)

end if

Note that the nature of the rewrite tactic means that, even if all other rules are disabled,
the formula resulting from rewriting is unlikely to bear as close a resemblance to the original as
suggested above.

3.1.3 Forward Rules

Forward rules are parameterised axioms used by m-NEVER'’s rewriting tactic. The body of a
forward rule must take the following form:

implies (expression, expression)

The definition of a forward rule also contains a list of trigger expressions. The rewriting tactic
attempts to match expressions in the current formula with trigger expressions from forward rules.
Matching is performed by instantiating the parameters of the rule. Should a trigger expression be
matched, the same instantiation will be applied to the body of its rule. If m-NEVER can simplify

the condition of the instantiated rule to true, then the consequent will be added to the list of
hypotheses with which m-NEVER is rewriting.
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When the body of a forward rules is of the form:
implies (true, expression)
it may be abbreviated to:

expression

Such rules are known as unconditional forward rules, while other forward rules are known
as conditional forward rules.

Forward rules are like facts, in that they are used to add more assumptions to the list
of hypotheses that m-NEVER is using to rewrite the current formula. Facts typically add an
assumption which is a general predicate on universally quantified variables. Forward rules, on the
other hand, typically add an assumption in which the variables are instantiated with a particular
valuation relevant to the formula being simplified. Use of an assumption from a forward rule is
more efficient than using one from a fact, since it avoids instantiating the assumption on every
use. The user also gains more control over how the assumption is used by restricting it to a
particular valuation.

Once included, a fact is used in every rewriting. If the fact is irrelevant in a particular
rewriting, then attempts to make use of it will lead to unnecessary work on the part of m-NEVER.
Forward rules are used to add relevant assumptions dynamically when rewriting a formula (A
forward rule is deemed relevant if one of its trigger expressions appears in the formula. ).

A forward rule from the problem in appendix A appears below as an example:

axiom containsmember(a, p, e)

frule

triggers (atype’extract{a, p)

begin

all i, j : implies(and(int’ge (i, a’lowbound),
int’ge(p, i),
int’ge(j, p),
int’ge(a’highbound, j),
atype’extract(a, p) = e),
contains(a, i, j, e))

e)

end containsmember

The interaction below is an example of this forward rule:

UNCLASSIFIED 15



ERL-0545-RR UNCLASSIFIED

int’ge(i, a’ lowbound)
int’ge(p, i)

int'ge(j, p)
int’ge(a’highbound, j)
étype’extract(a, p) = e
éontains(a, i, Jj, p)

! rewrite;

Which simplifies

with the assumptions ... CONTAINSMEM ... to
int’ge(i, a’ lowbound)
int’ge(p, i)

int’ge(j, p)
int’ge(a'highbound, 3)

atype’extract(a, p) = e

Once again, the nature of the rewrite tactic means that the formulae resulting from the use
of forward rules can differ significantly from the original.

3.2 Commands

There are several commands to control the basic state of m-NEVER. In particular, commands are

16 UNCLASSIFIED



UNCLASSIFIED ERL-0545-RR

available to commence work on proofs, to save and restore the state, and to undo proof steps.
Of more interest are those commands used to manipulate the formula for which a proof is being

attempted. This formula is known as the current formula. Commands for manipulating the current
formula are described below.

3.2.1 Simplification

simplify
This command invokes m-NEVER'’s simplification heuristics. Simplification finds propositional
tautologies, substitutes expressions for other equal expressions and instantiates quantified vari-
ables.

simplify without case analysis

This command performs a subset of what the simplify command does. Namely, if a function

call contains a conditional expression the conditional is not moved out of the function call.
simplify without instantiation

This command simplifies the formula without making any instantiations of quantified variables.

Of the simplification commands this one probably represents the optimal compromise between
speed and results.

trivial simplify
This command checks for simple tautologies. In practice most tautologies are too hard for trivial
simplify to identify.

3.2.2 Rewriting

rawrite

The formula is simplified using the rewrite and forward rules, simplification and by expanding

functions to their definitions.

When using the rewrite command, m-NEVER lists the names of those rewrite rules used in the

rewriting and those forward rules whose patterns were matched during rewriting. It would be

more useful if a distinction was made between those forward rules which matched and contributed

information which led to a simplification, and those forward rules which only matched.
trivial rewrite

The formula is rewritten using only the unconditional rewrite rules.

3.2.3 Substitution

invoke

Invocation is used to substitute a function call with its definition. The invoke name command
will replace every instance of the function name in the formula with its definition. In order to
expand particular instances of a function application the invoke name(arguments) variant of
the command is used, which only expands those instances of the function with the arguments
specified. If there is more than one instance of a function application with the same arguments
there is no way to expand a particular instance.

In the case of partial functions (functions with preconditions) the function is replaced by a
conditional expression equal to the function’s definition only if the precondition is true. Consider
the generic partial function below:

UNCLASSIFIED 17



ERL-0545-RR UNCLASSIFIED

function F(a) : T
pre Pla]
begin
Ela]
end F

Now if the current formula contained the expression F (x) then invoking F would replace F (x) by:

if P{x] then
Elx]

else
F(x)

end if

This is intended to mean that if the precondition holds, then the function is equal to its defining
expression; otherwise nothing more is known about the value of the function than before.
equality substitute

Equality substitution is used to replace expressions in the formula with other expressions to
which they are equal. If the formula contains an implication and the antecedent of the impli-
cation is (or has as one of its conjuncts) the expression e; = e, or e; = e; then the command
equality substitute e; will replace all instances of e; in the consequent with e,. Similarly if
the condition of an conditional statement is (or has as one of its conjuncts) the expression e; = e;
or e; = e; then the command equality substitute e; will replace all instances of e; in
the then part of the expression with e,. It is not possible to use equality substitution to repace
particular instances of an expression.

If an expression e appears in multiple equality expressions which are in the antecedent of an
implication or the condition of a conditional then it is not possible to use equality substitute
to substitute new values for e in only one of the expressions in which it appears.
The equality substitute command may be given a list of substitutions to make, as in:
equality substitute e;, ey.. If the list of substitutions is the empty list then m-NEVER
heuristically chooses which substitutions to make.

label

The command label expression replaces every occurence of expression in the current
formula with a label of m-NEVER’s choosing and the predicate identifier = expression,
where identifier is the chosen label, is made an additional hypothesis of the current formula.
Labelling is used to reduce the complexity of an expression which contains a complex and repeated
subexpression.

3.2.4 Reduction

reduce

This command attempts to reduce the current formula through simplification, rewriting and
invocation.

raduce without instantiation

This command attempts to reduce the current formula though simplification without instantiation,
rewriting and invocation.
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3.2.5 Definitions

use
The function of the use command is to incorporate a particular fact, rewrite rule or forward rule
into the current formula as a hypothesis. The use command conforms to the following template:

use name p; = e;, pz = €z ..

where name is the name of a fact, rewrite rule or forward rule, the ps are parameters of the
named axiom and the es are expressions. The named axiom is added to the current formula as
a hypothesis with those parameters nominated in the command instantiated with the expression
specified. Any unused parameters are universally quantified.

prova by facts
This command adds all the available facts to the formula, as if with the use command, and then
attempts to reduce the resulting formula.

enable, disable
Rewriting, reduction and proving from facts automatically make use of definitions in the prover’s
database. Rewriting uses rewrite rules and forward rules. Reduction uses these and function
definitions as well. The user has the option of enabling or disabling these various definitions with
the enable and disable commands which conform to the following template:
(enable | disable) name
where name is the name of the definition in question.

3.2.6 Case Analysis

split
The split command is used to partition the current formula about a given predicate. If the
current formula is F then partitioning about the predicate P results in the new current formula:

if P then
F

else
F

end if

which allows consideration of F in the case when P is true, separately from the case where P is false.
prove by casas

This command attempts to reduce each conjunct or disjunct of the current formula independently
of the others. The result is the recombination of each of the subproof results with the appropriate
conjuncts and disjuncts.

3.2.7 Induction

induct
The induct command is used to employ a Boyer-Moore style induction scheme on the current
formula. The induct command heuristically chooses a term on which to induct by default.
However, the user may specify a specific term by using the syntax:induct on term.

prove by induction

This command is similar to the induct command except that, having chosen the induction scheme
as with induct, prove by induction goes on to reduce the formula.
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3.2.8 Normal Forms

conjunctive

This command recasts the current formula in conjunctive normal form.
disjunctive

This command recasts the current formula in disjunctive normal form.
rearrange

Rearranging the current formula by moves simpler expressions to the front of conjunctions and
disjunctions. Rearranging makes a formula more amenable to reduction.
prove by rearrange

This command attempts to prove the current formula by rearranging it. This command consists
of reduction without instantiation, rearranging and simplification without case analysis.

3.2.9 Quantifiers

open
Opening uses specialisation to remove enclosing universal quantification from the current formula.
close
Closing the current formula uses generalisation to universally quantify free variables in the current
formula, thus forming its universal closure.
prenax
prenex recasts the formula in prenex normal form, ie. with quantifiers having the maximum
possible scope. This is frequently a precursor to using the open command.
instantiate

This command, when accompanied by a list of instantiations, is used to instantiate quantified
variables in the current formula.

3.2.10 Counter Examples

countexr
This command attempts to find counter examples to the current formula. The universal closure of

the current formula is formed as with the close command and the resulting formula is reduced.
counter is considered successful if it returns false for any instantiations of the resulting formula.

3.2.11 State Manipulation

reset

This command resets the theorem prover’s state to the initial form it had immediately after start-up.
freeze

The command freeze "name" stores the theorem prover’s current state in the file name.
thaw

The thaw "name" command restores the theorem prover’s current state to the state stored in the
file name.

try
A user may make another definition after commencing the proof of the previous definition’s
correctness, leaving behind a partial (possibly empty) proof. The command try name is
used to return the theorem prover to the partial proof of the definition name. The command
try P, where P is some predicate, is used to commence ad hoc proofs.
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3.3.1 Strengths of m-NEVER

m-NEVER is a powerful theorem prover capable of proving nontrivial theorems with little or no
assistance from the user. Indeed, m-NEVER is possibly the most powerful theorem prover of its
type.

Only a few simple commands are required to operate m-NEVER. A new m-NEVER user will
be able to prove nontrivial theorems within a relatively short space of time. In contrast, systems
like HOL require much learning and skill on the part of the user before proofs can be successfully
completed. For this reason m-NEVER, more so than many other theorem provers, may be suited
to applications in industry where a high degree of formal training cannot be expected of users.

m-NEVER is an interactive theorem prover. This gives the user the ability to guide proofs as
they progress. This ability is a significant advantage over batch oriented systems, like the Boyer-
Moore theorem prover and MALPAS's algebraic simplifier, in which users must attempt to supply
all the information the prover may require before the proof is commenced.

The inclusion of forward rules, a facility not available in MALPAS, can greatly enhance the
automatic capabilities of m-NEVER. It can, however, require a significant level of experience to
determine whether an axiom is more usefully expressed as a rewrite or forward rule.

3.3.2 Weaknesses of m-NEVER

m-NEVER’s simple proof management scheme makes it difficult to use lemmas in proofs. It
is common practice among people hand proving formulae to assume various lemmas as they are
required. These lemmas are then discharged after the conclusion of the original proof. For example,
a person attempting to prove a formula, f, may, during the proof, assume a lemma, /; returning
to prove [ only after finishing the proof of f. The existence of the try command suggests that
this style of reasoning would be supported by m-NEVER. Below is a sample interaction showing
what happens if this is attempted:

User declares formula to prove:
! axiom £(vy, vz,..) =

begin
Py (vi, v2,..)
end £;
F
Beginning proof of F ...
Eg_(_"gﬂgL;-)_

User simplifies the proof obligation:

_'E,}__(le Vg,...)
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User declares lemma to help complete proof:
1 axiom 1(vy, vz,..) =

begin
Py (vy, va,..)
end 1;
L
Beginning proof of L ...
P2 (Vi, Vor...)

User returns to proof of formula:
! try £
Continuing proof of F :
P (Viy Vo)

7 v

User attempts to use lemma:
1 use I;

m-NEVER has forgotten the lemma:

This problem occurs because when the try command is used to return to some partial proof the
system is returned to the state it was in when that proof was last current. The motivation for this
may be as a naive method for avoiding circular reasoning. This feature has a strong impact on the
way in which m-NEVER is used. Before commencing a proof a user may declare several axioms
on the chance that these axioms will be useful during the proof. However, it is not always possible
to tell which axioms will be needed before a proof has begun, or whether they will be more useful
if expressed as facts, rewrite rules or forward rules. If while constructing a proof the user realises
that a lemma is needed then the current proof must be undone, that required lemma declared and
the proof recommenced. In cases where it is necessary to undo a large amount (several hours) of
work to declare a lemma a user may wish to prove the lemma before using it.

m-NEVER only supports reasoning in one particular logic. This does not present a problem
if m-NEVER is only used as a tool for reasoning about m-Verdi programs. However, if users wish
to employ m-NEVER to reason about questions from other problem domains then they may find
that the supported logic does not afford them the most natural way of expressing themselves. This
limitation has become a weakness of the HOL system which also supports a single logic. HOL's
logic is natural for reasoning about hardware problems, its intended problem domain. However,
as the power of this theorem prover has been recognised, people have tried to apply it to problems
from other domains, like software verification, and have found that problems from these other
domains are less naturally expressed in HOL's logic. In contrast, Isabelle [14] and pral [9] have
been designed as generic theorem provers which can use multiple logics.

Only a fixed set of tactics, hard-coded into the theorem prover, are supported by m-NEVER.
Other systems, such as HOL and Isabelle, allow users to write their own tactics. The ability for
users to create their own tactics is important as it allows users to assemble a set of commands
well suited to solving problems in each theory they develop. While m-NEVER does allow the
user to declare rewrite and forward rules for use with its built-in tactics, this facility is much less
powerful than allowing users to write their own tactics.
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Only a small set of commands, allowing a coarse level of interaction, are supported by m-
NEVER. Interactivity should not be regarded as a boolean valued property of theorem provers.
Theorem provers can be placed on a spectrum of interactivity. At one end of the spectrum are
theorem provers like Demo2 [17], which allow the user to manipulate formulae in the most intricate
ways possible. At the other end of the spectrum lie systems like MALPAS and the Boyer-Moore
theorem prover, where the only option available to the user is whether to invoke the theorem
prover or not! Systems like m-NEVER and GVE [18] lie somewhere between the two extremes.
m-NEVER offers only a few coarse grain commands to the user. The optimal situation is to have
a theorem prover with commands that allow very fine-grained manipulation of predicates, and
the ability to combine these commands with tactics to create more powerful, but less fine-grained,
commands. To use an analogy: if you wish to make shapes out of stone, it is better to have a pile
of gravel and some glue than it is to have a boulder and no chisel. m-NEVER represents a middle
ground where you have several preformed rocks, which might not be of the right shape, but are
closer than the boulder, and did not require assembling.

The coarse-grained nature of m-NEVER’s commands for manipulating predicates can be
frustrating to a user. It seems to be assumed that most of the intelligence required for theorem
proving is embodied in the heuristics used by m-NEVER and this assumption has led to a system
in which it is difficult for users to express their own intelligence and intuition. Users of m-NEVER
will often see simplifications that they would like to make, but will find it difficult to state how
to make the desired simplification in terms of commands like simplify, reduce, etc. To use
another analogy: if you are asked to carve a statue from the stone in a cliff face you will find
a range of tools useful. Dynamite may let you get a piece of stone of about the right size. A
jackhammer might get the stone to the right shape. You may wish to add the finishing touches
with a chisel. Sometimes, using m-NEVER is like trying to add the finishing touches to a statue
with a jackhammer. The coarse nature of the commands also makes m-NEVER a slow system.
Even if the user only wishes to make a small transformation to the current predicate, m-NEVER
invariably attempts a more significant simplification, even if none can be made, taking several
minutes to complete the desired action.

It is difficult for users of m-NEVER to focus their attention on subproblems within the current
formula. When faced with a large problem a common method for dealing with the complexity is to
focus attention on some subproblem. Although this is a natural human problem solving strategy it
is not supported by m-NEVER. There is no way to set the current formula to some subexpression
of the formula being worked on. All m-NEVER commands affect the entire current formula.
This means that any command issued with the intention of simplifying some subexpression may
significantly complicate other parts of the current formula. Indeed, after issuing some commands
it may be difficult to tell which portions of the resulting predicate correspond to the subexpression
the command was intended to simplify. The theorem prover Demo2, a system based around the
concept of opening windows on subexpressions, demonstrates the power of a system in which the
user and the theorem prover can restrict their attention to a particular subexpression.

Although it is not possible to focus m-NEVER'’s attention on a subexpression of the current
formula, this is such a fundamental theorem proving technique that it is necessary to simulate
this approach in order to analyse complex predicates. Typically m-NEVER users identify subex-
pressions of the current formula they wish to simplify, then recommence the proof after declaring
rules designed to simplify the chosen subexpressions. This process can be very slow. Also, this
technique is rather different to a more traditional hand proving approach where people may work
through each subexpression, usually only defining separately those lemmas which are considered
to be of general or repeated use. A complex proof in m-NEVER will require several definitions
which will only ever be of use for that particular proof. The necessity to define many problem
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specific rules is also true of MALPAS. The problem is exacerbated in MALPAS where the user is
not encouraged to prove that the defined rules are correct.

The transformations made to the current formula by m-NEVER’s commands often leave it in
an unrecognisable form. The form of a predicate has a dramatic effect on a human’s ability to
think and reason informally about it. For example, the sentence “If it does not rain today I will go
for a walk and wash the car.” can be expressed by the predicate: =R = W A C, where R denotes
“it rains today”, W denotes “I go for a walk”, and C denotes “I wash the car”. The sentence can
also be expressed by the equivalent predicate: (RV W)A (R V C). The first predicate, though only
slightly simpler than the second, is significantly easier for a human to reason about, as it more
closely resembles the way a human would state the problem. Users typically spend some time
phrasing specifications in ways that are intuitively easy for them to reason about. Many of the
m-NEVER commands transform predicates in such a way that they become unrecognisable and
are no longer natural to reason about. It may take a user several minutes to understand the new
predicate so as to ascertain whether it represents a significant simplification of the previous one.
This problem is related to the coarse nature of m-NEVER commands and to the inability to restrict
their effect to subexpressions of the current formula.

m-NEVER’s heuristics are particularly good in some areas, such as verifying iterative solutions
against recursive specifications, but can be weak in others. This can lead to a tendency to specify
problems in a manner that suits the theorem prover rather than the specifier. The purpose of
specification is to capture, in a formal manner, those concepts in a human’s mind that form their
requirements for a program. It is the purpose of verification to guarantee the correctness of a
program with respect to a specification. However, there can be no guarantee that a program’s
specification captures the intent of its human specifier. One way to reduce the chance of errors
in a specification is to specify in an abstract manner. Specifying abstractly decreases the semantic
gap between the abstract concepts in the specifier's mind and the specification, thereby increasing
the probability that the specification will be correct. It also increases the semantic gap between the
specification and the code, thereby increasing the difficulty of verifying the code. Nonetheless,
specifications should remain as abstract as possible so as to increase the probability of their
correctness. There is no point in easing the difficulty of verifying code against a specification
if this is achieved by bringing the correctness of the specification into doubt. For example,
suppose a user wishes to develop a program to find the greatest common divisor of two natural
numbers. One specification could be that a common divisor of two numbers is a number that
divides both numbers exactly, the greatest common divisor being the greatest of all such numbers.
This specification is shown formally below.

div z £ {z|z mod z = 0}

GCD z y £ maz (div 2N div y)

Another specification could be that the greatest common divisor of a number and itself is that
number, and the greatest common divisor of two distinct numbers is the greatest common divisor
of the smaller one and the difference between them. This specification is shown formally below:

=Y

A z ‘
GCD(z,y) = { GCD(min(z, ), max(z, y) — min(z,y)) ,z #y

It is by no means obvious that the second specification ( actually Euclid’s algorithm for calculat-
ing greatest common divisors ) specifies the greatest common divisor of two numbers. The task
of verifying an iterative implementation of Euclid’s algorithm against the second specification is,
of course, much easier than verifying it against the first, more abstract, specification. However,
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verifying an implementation against the second specification is not a worthwhile task unless it
is proven that the two specifications are equivalent. A recursive specification does not always
represent the most abstract way to specify a property, as was the case with the example above. m-
NEVER users would be well advised to avoid the tendency to choose specifications against which
they will be able to verify their programs with ease over specifications which transparently encap-
sulate the properties they desire of the program under development. This tendency is displayed
in the m-EVES documentation. The m-NEVER distribution includes an example verification of an
iterative version of Euclid’s greatest common divisor algorithm against a recursive specification
of Euclid’s algorithm. Further, in the paper The TR Program Example [10], included as part of the
m-EVES documentation, the following strategy for producing verified programs is recommended:

A good verification strategy is to implement something iteratively, and specify it recursively. Then,
prove that the specification meets the implementation. This is the basic technique used throughout
the tr program. I once tried to specify the character map and initialization procedures by using
quantifications to describe the results of the procedures. This was a bad idea on two counts:

* The specification was descriptive, not constructive.

e It is more difficult to prove VC’s that contain quantifications. The prover has better heuristics for
recursive definitions.

This philosophy — where a program is written, and a specification then chosen to fit — is one in
which the cart has been placed firmly before the horse. If the semantic gap between a specification
and an implementation is too great to prove their correspondence then a good approach is to choose
some intermediate specification, prove the equivalence of the two specifications, and verify the
program against the intermediate specification. This approach can be very demanding, highlighting
the difficulty of proving nontrivial theorems with m-NEVER. Trivialising programs’ specifications
in order to simplify their proof obligations is not the correct way to make this difficulty go away.

m-NEVER, as part of m-EVES, is not freely distributed, and as a tool with a restricted user
base m-NEVER is destined to have a restricted development path and limited support. A system
with a strong user base and for which the source code is freely available will evolve and improve
at the hands of its users. For example, HOL is now being rewritten by its users at the University of
Calgary. In contrast, the evolution of m-NEVER will likely only take place in the direction and at
the rate chosen by Odyssey Research Associates. The more users any tool has, the more experience
will be gained with it, and the more supporting tools will be developed for it. For example, HOL is
freely available and widely used. As a result, a number of libraries of theories and tactics written
by users have become part of the HOL distribution. Also, a tool to provide a limited SunView™
interface has also been developed by a HOL user. Users of popular systems frequently band
together to form self-help groups. The haskell mailing list, news groups like comp.text.tex
and user groups like HOL's are all examples of popular forums where experiences can be shared
and valuable lessons learned. m-NEVER’s small user base means that this level of support is
unlikely to develop.

4 DOCUMENTATION

The documentation for the m-EVES system is the book m-EVES Collected Papers [11]. This book is
a collection of the following papers: m-EVES: A Tool for Verifying Software [4], An Application of the
m-EVES Verification System (3], Formal Verification in m-EVES [13], A Description of m-Verdi (2], An
m-Verdi User’s Guide [5], m-EVES User’s Manual [12] and TR Program Example [10]. Each of these
papers is of a very high standard and more than adequate in its original role as either a technical

report or a conference paper. However, it is not the case that collectively these papers represent
adequate documentation for m-EVES.
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The papers A Description of m-Verdi [2] and An m-Verdi User’s Guide [5] form, in combination,
an adequate reference manual for m-Verdi. A good reference manual is essential for both the novice
and experienced user of any complex system. These two papers have a similar structure and cover
the same breadth of material. In some cases the same information is contained in both papers,
more or less verbatim. In other cases, each paper contains information which is not contained in
the corresponding section of the other paper. To understand a particular feature of the m-Verdi
language it is usually necessary to consult both papers. The m-EVES documentation would benefit
greatly if these two papers where replaced by one comprehensive reference on m-Verdi.

A Description of m-Verdi [2] and An m-Verdi User’s Guide [5] describe a version of m-Verdi that
is somewhat different to the version implemented in m-EVES version 4. Both papers describe
language features, like packages and environments, which are not supported by m-EVES. In other
cases, the language features described in the papers are supported by m-EVES, but with a different
syntax. For example, below is an axiom definition example from A Description of m-Verdi [2]:

axiom
pragma (name = "sequence_6")
all s,m: and(length(new_sequence_of_message) = 0,

length(apr(s,m)) = plus(length(s),1l),
Int’ge({length(s), 0))

This axiom should instead be written:

axiom sequence 6(s, m) =
begin
and(length(new_sequence_ of message) = 0,
length(apr(s, m)) = plus(length(s), 1),
int’ge(length(s), 0))
end sequence_6

The only way for users to learn the correct syntax for these language features is to look at examples
in the more recent papers. This level of inaccuracy diminishes the worth of A Description of m-Verdi
[2] and An m-Verdi User's Guide [5] as works of reference.

m-EVES User’s Manual [12] provides the reference material for m-NEVER. A later version of
this paper forms the on-line documentation of m-EVES. The differences between the on-line and
textual versions of the paper are subtle. Two important differences are that the on-line version
does not state that procedure stubs are not supported, and the on-line version describes a library
mechanism that is not discussed in the textual version. It would be of benefit to all users if the
latest version of this paper were part of m-EVES Collected Papers [11].

In general the descriptions found in m-EVES User’s Manual [12] are accurate, with the exception
of continual references to a nonexistent menu system. For example the following is an extract from
the manual decribing the enable command:

ENABLE
enable [RULE-OR-NAME] ;

Enables the given RULE-OR-NAME. Once enabled, the automatic
prover can use it. If RULE-OR-NAME is not supplied then a menu of
currently disabled events is produced.

This menu feature may be supported on the version of m-EVES for Symbolics™ Lisp machines,
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but it is definitely not present in the version for Sun™ work stations.

Sorely missed from the reference material on m-NEVER is information, not on what each of
the commands does, but rather in which circumstances each command is useful. For example,
while the manual explains the syntax of rewrite and forward rules, and how m-NEVER uses them,
no attempt is made to explain the class of problems that these rules are used to solve. This sort
of practical information on how to use the commands to generate successful proofs would be of
great benefit to new users. Some knowledge on how to best use the commands can be gained
from m-EVES User's Manual [12] and from the proof examples in the other papers, but mostly it
must be acquired though trial and error. Were the collective wisdom of m-NEVER’s developers
on how to use the commands to be documented, the resulting information would greatly speed
the process of becoming a competent m-NEVER user.

Also missing from m-EVES’ documentation is a tutorial-style introduction to the system.
While the papers give several general overviews of the system and a few worked examples, they
do not provide a gentle and thorough introduction to using the system. Such a tutorial, while
not being the original intent of the papers, is a necessary part of good documentation. A tutorial
guide to m-EVES should introduce each of the features of m-Verdi and m-NEVER and include a
series of examples to ensure the user understands the feature introduced.

In summary, while each of the papers in m-EVES Collected Papers [11] is fine, they do not,
as a collection, represent adequate documentation for the m-EVES system. A comprehensive and
detailed tutorial guide and reference manual are needed to replace the existing documentation.
This lack of adequate documentation greatly increases the time it takes to become competent at
using the system. Although m-EVES’ ease of use makes it ideally suited to compete with systems
like MALPAS in the commercial verification market, it will first need to be properly documented,
as commercial software companies can ill afford to expend the time required to learn their tools
by trial and error.

5 CONCLUSIONS

In this report, m-EVES has been examined as an environment for the development of formally
verified software. The discussion has centred on its two main components: the language, m-
Verdi, and the theorem prover, m-NEVER, and comments have been made on their strengths and
weaknesses. The documentation has also been discussed.

It has been seen that m-Verdi has a simple semantics, while having a high degree of expres-
siveness as a programming language. It includes some quite useful constructs to aid in theorem
proving, and has facilities for modelling a program’s target hardware. However, the language is
verbose and cumbersome in appearance, making it somewhat difficult for the user to analyse large
predicates. In the author’s opinion, the lack of polymorphism, and the inability to define recursive
procedures, are severe and unnecessary restrictions on the language.

The theorem prover, m-NEVER, has also been examined, revealing the following strengths:

e m-NEVER is a powerful theorem proving tool, capable of automatically proving non-trivial
theorems;

* its small number of theorem proving commands means that a new user is able to prove
theorems after just a short introduction to m-EVES;

* the ability to use forward rules is very useful; and

* m-NEVER is interactive, allowing the user to guide the proof as it progresses.
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However, some weaknesses which limit m-NEVER’s usefulness were also revealed:

* its simple proof management scheme makes it hard to use lemmas in proofs;

* reasoning in only one logic is supported;

* users cannot define their own proof commands (tactics);

¢ there is just a small set of built-in proof commands, which are quite coarse-grained and can
be time-consuming;

* the prover cannot focus on subexpressions of the predicate one is trying to prove; and

* m-NEVER’s heuristics are good in some areas but weak in others, and can lead to a tendency
to specify problems in a manner that suits the theorem prover, rather than the specifier.

It is important, in evaluating program verification environments, to compare how non-trivial
problems can be solved within different systems. In further work, it is planned to carry out
such a comparison between m-EVES, Gypsy, MALPAS and HOL. Crucial points to address in
such a study would be:

* the user interface of the tool;

¢ the expressiveness and flexibility of the input language, the theorem proving commands etc;

* the time it takes a new user to become comfortable with the system, and to be able to prove
significant results;

¢ the time and effort required by the experienced user to formulate a problem, and derive the
machine proof;

* the speed of the theorem prover itself; and

* if the tool has deficiencies, how easy it is to remedy them.
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APPENDIX A BINARY SEARCH PROBLEM

This appendix describes the development of an m-Verdi algorithm for binary searching sorted
arrays. To binary search a sorted array, for a particular target, one looks at the midpoint of the
array. There are three possibilities: either the midpoint is the target and the search is complete;
or the midpoint will be greater than the target, in which case the search can be restricted to the
lower half of the array; or the midpoint will be less than the target, in which case the search can
be restricted to the upper half of the array. If the target has not been found, then the portion of
the array still under consideration is cut in half again, and so on. This process continues until the
target is found or the array is exhausted. This algorithm is an important one as it can search an
array in O(logn) time (where n is the size of the array).

Several integer variables are introduced for use throughout the program and its supporting axioms.

var i, j, k, 1, m, t : int;

A function for calculating the mid-point of two indices is introduced. This is done through a
function stub and an axiom asserting the defining properties of the function. It would have been
more natural to define the function as calculating the average of the two indices; however, this
definition proved difficult to work with.

jzi

mid(i, j) = | % |
function mid(i, j) : int;

axiom middef (i, Jj) =

frule

triggers (mid(i, 7))

begin

implies(int’ge(j, i),
some 1 : and(plus(i, 1) = mid(i, 7J),
or (plus (mid(i, j), 1) = 7,
plus(plus(mid(i, 3), 1), 1) = j)))

end middef;

The proof obligation of this axiom is not discharged as it is mid’s definition and not some provable
property of the mid function.
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Two rewrite rules are used to express the fact that the mid-point of two indices lies between them.
These rules and their proofs are given below:

jzi
mid(i, j) > 4

axiom midincl (i, j) =
rule
begin
implies(int’ge(Jj, i), int’ge(mid(i, j), 1))
end midincl;

use middef i = i, j
prenex;
simplify;

j:

i
7> mid(i,J)

il

axiom midinc2 (i, 3J)

rule

begin
implies(int’ge(j, i), int’ge(j, mid(i, 3)))

end midinc2;

use middef i = i, j
prenex;
simplify;

I
(%
-~
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If the mid-point of two indices is the same as the (supposedly) larger of the two, then the two
indices are the same.

j= 1,5 = mid(i, 5)
i=J

axiom midprop(i, j) =
frule
triggers (j = mid(i, 3))
begin
implies (and(int‘ge(j, i),
Jj = mid(i, 3)),
i=3)
end midprop:;

The proof of this property follows directly from mid’s definition.

use middef i = 1, j = j;

prenex;

split i = j:

simplify;
Two integer constants, top and bot(tom), are introduced. Such declarations have no proof
obligations. It is asserted that top is at least as big as bot. This assertion is a statement of
fact and no attempt is made to meet its proof obligation.

bot : Z

const bot : int:;

top : £

const top : int;

bot < top

axiom botletop () =
frule
triggers (bot, top)
begin

int’le(bot, top)
end botletop:;
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An array type vec is declared as integer arrays from bot to top.
type vec = array bot .. top of int:;
Rewriting uses the rule botletop to prove that vec is nonempty.
rewrite;
A variable a of type vec is introduced. Such a declaration has no proof obligation.

var a : vec;

A predicate sort (for sorted) is defined on arrays. sort holds if the array is sorted in ascending
order.

sort(a) £ bot < i < j < top — a; > 4

function sort(a) : bool =
begin
all i, j : implies(and(int’ge(i, bot),
int’ge(3j, 1),
int’ge(top, 3)),
int’ge(vec’extract(a, j),
vec’ extract(a, 1i)))
end sort;

A predicate cont (for contains) is defined on an array, two indices and a target. cont holds when
the array contains the target between the two indices.

cont(a,i,j,t) £ t € a; ... a;

function cont(a, i, j, t) : bool =
pre and(int’ge(i, bot),
int’ge(j, 1i),
int’ge(top, j))
baegin
some k : and(int’ge(k, i),
int’ge(j, k),
vec’extract(a, k) = t)
end cont;
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A rule is defined which states that asking if a target is contained in an array between an index
and itself is the same as asking if the array at that index is the target.

bot <7 < top
cont(a,t,i,t) & a; =t

axiom contiil(a, i, t) =
rule
begin
implies (and(int’ge (i, bot),
int’ge (top, 1)),
cont(a, i, i, t) = (vec’extract(a, i) = t))
end contiil;

The proof of this rule follows directly from the definition of cont.

invoke cont;
simplify without case analysis:

Another rule is introduced which states that, if an array at a given index is the target, then the
array contains the target between the index and itself.

bot i< top, g =1t
cont(a,i,4,t)

axiom contii2(a, i, t)

frule

triggers (vec’extract(a, i) = t)

begin

implies (and(int’ge (i, bot),
int’ge(top, i),
(vec’extract(a, i) = t)),
cont(a, i, i, t))
end contii2;

This rule’s proof follows from the definition of cont. Note that it is necessary to highlight that
there does exist a k between i and i, namely i itself.

invoke cont;

simplify without instantiation:
instantiate k = i;

simplify without instantiation;
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Similarly the next rule infers that if the array at a given index is the target then the array contains
the target between any two indices enclosing the target.

bot i <k<jStop, ap=t
cont(a,i,j,t)

axiom contmem{a, k, t) =
frule
triggers (vec’extract(a, k) = t)
begin
all i, j : implies(and(int’ge(i, bot),
int’ge(k, i),
int’ge(j, k),
int’ge(top, j),
vec’extract(a, k) = t),
cont(a, i, 3j, t))
end contmem;

The proof of contmem follows directly from cont’s definition.

invoke cont;
simplify without case analysis;
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This rule states that if there are two adjacent sections of the array, and the target is not in the
lower section, then asking if the target is in the upper section is the same as asking if it is in either

section.

bot < i < k < j < top, ~cont(a,i,k,t)
cont(a,k + 1,4,t) & cont(a,i,j,1t)

axiom contcont(a, i, k, j, t) =
rule
begin
implies (and(int’ge(i, bot),
int’ge(k, i),
int’gt(j, k),
int’ge(top, j).
not (cont(a, i, k, t))),
cont (a, plus(k, 1), j, t) = cont(a, i, J, t}))
end contcont;

The proof of cont cont proceeds from cont’s definition by partitioning cont (a,

cont(a, i, k, t) and cont(a, plus(k, 1), j, t).

invoke cont:;
split int’ge(k, k’2);
simplify without case analysis:;
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The following two rules about cont are for sorted arrays. These rules allow the size of the section
of array being tested by a cont predicate to be reduced by eliminating portions which can not
contain the target because their elements are too great or too small.

sort(a), bot < i< k<j<top, ap >t
cont(a,i,j,t) & cont(a,i,k,t)

axiom contpartl(a, k, t) =

frule

triggers (int’ge(vec’extract(a, k), t})

begin

all i, j : implies(and(sort(a),
int’ge (i, bot),
int’ge(k, i),
int’ge(j, k),
int’ge(top, j),
int’ge(vec’extract(a, k), t)),
cont(a, i, j, t) = cont{(a, i, k, t))

contpartl is commenced by eliminating the case where k is the target and the case where the
array does not contain the target. The proof is completed by using instantiation on the sort
predicate.

I
P

split vec’extract (a, k)
rewrite;

split cont (a, i, 3, t):
reduce;

invoke cont;

prenex;

instantiate i’0 =k, 3’0 = k’0;
rewrite;
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sort(a) , bot i<k < j<top, ar <t

cont(a,i,j,t) & cont(a, k,j,t)

axiom contpart2(a, k, t) =
frule
triggers (int’ge(vec’extract(a, k), t))
begin
all i, j : implies(and{sort(a),
int’ge(i, bot),
int’ge(k, i),
int’ge(j, k),
int’ge(top, 3J),
int’ge(t, vec’extract(a, k))),
cont(a, i, j, t) = cont(a, k, j, t))
end contpart2;

The proof of contpart2 follows the same pattern as the proof of contpartl.

split vec’extract (a, k)

I
o

rewrite;

split cont (a, i, j, t):
reduce;

invoke cont;

prenex;

instantiate i’0 = k, j’0 = k’0;
rewrite;

equality substitute t;

rewrite;
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This last rule states that if the array contains the target between two indices then, the array will
contain the target between any two enclosing indices.
bot <k i< j<I L top, cont(a,i,j,t)

cont(a,k,l,t)

axiom contexp(a, i, j, t) =
frule
triggers (cont(a, i, 3J, t))
begin
all k, 1 : implies(and(int’ge(k, bot),
int’ge(i, k),
int’ge(j, 1),
int’ge(l, 3j),
int’ge(top, 1),
cont(a, i, 3j, t)}),
cont{a, k, 1, t))
end contexp;

The proof of contexp proceeds directly from the definition of cont.
invoke cont;
rewrite;
A boolean variable found is introduced. It will be used by the search procedure to signal

the presence of the target in the array being searched.

var found : bool;
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Below is the searching procedure itself. search searches the array a for the target t. found is
set to true if and only if a contains t, in which case i is set of the index at which a is t.
procedure search(a, t, found, i)
pre sort(a)
posta’' =a A
t=tA
found’ = cont(a, bot, top, t) A
found’ = bot <" < top A ar <t
begin
i, j := top, bot
while a; Zt Ai #jdo
{ sort(a) A bot<igj<top A cont(a, bot, top, t) & cont(a,i,j, t) }
m = mid(i, j)
if am =t then
i:=m
elseif a, <t then
i=m+1
else { ap >t}
j=m
end if
end while
found .= g, =t
end search
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procedure search(lvar a, lvar t, pvar found, pvar i) =
pre sort (a)
post and(found = cont(a, bot, top, t),
implies (found, and(int’ge(i, bot),
int’ge(top, i),
vec’extract(a, i) = t)))
begin
pvar j
pvar m

i := bot
j := top
loop
invariant and(sort(a),
int’ge (i, bot),
int’ge(3j , i},
int’ge(top, Jj),
cont (a, bot, top, t) = cont(a, i, Jj, t))
measure ordinal’val (minus(j, 1i))

exit when or(vec’extract(a, i) = t, 1 = j)
m := mid(i, 3Jj)
if vec’extract(a, m) = t then

i:=m

elseif int’lt (vec’extract(a, m), t) then
i := plus(m, 1)
else
j oi=m
end if
end loop
found := vec’extract(a, i) = t
end search;

The proof of correctness of the procedure search can now be commenced. The proof is approached
by first attacking all the trivial subexpressions relating to the ordering of i and j, and then using
the axioms declared above to discharge the more complex portions of the proof. Below is given a
step-by-step description of the proof (a full transcript of the proof session, with machine responses,
is not given because it is much too long):

First some general simplifications are made, making use of the fact (from the loop invariant)
that cont (2’0, bot, top, t) = cont(a’0, i, J, t):

simplify without instantiation:
equality substitute cont(a’0, bot, top, t):

Next contmen is used to eliminate the case where vec’extract (a, i) = t,and contiil to
eliminate the case where i = 3.

equality substitute j;
rewrite;
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In the next set of proof steps midincl is used to clean up expressions like int’le (i,
mid(i, 3J)) and int’le(bot, mid(i, 3)):

split int’ge{(mid(i, j), i):
simplify without instantiation;
split int’ge(j, 1i):

rewrite;

At this point midinc2 is used to clean up expressions like int’ 1t (mid (i, j), 3j) and
int’le(mid(i, 3), top):

split j <> mid (i, 3J):

split int’ge (j, mid (i, 3)):
simplify without instantiation;
split int’ge (3, 1i}:;

rewrite;

Now contmenm is used to eliminate the case where vec’ extract (a, mid(i, j)) = t,
and contpartl to eliminate the case where int’ge(t, vec’extract(a, mid(i, 3))):

split and(int’ge(mid(i, 3J), i),
int’ge(j, mid{(i, 3))):
rewrite;

The cases introduced by the previous split command are cleaned up as follows:

split int’ge(j, i):
rewrite;

Now the formula is placed in a form suitable for use with instantiated facts:

prenex;
open;

At this point the information in the rule contcont is introduced, instantiated as above, and
the disable command is used to prevent rewrite from simplifying the information away.

use contcont a = a’0, i = mid(i, 3J), k = mid(i, ),
=3, t=t;
disable contcont;

The following proof steps rearrange the formula so that rewrite uses information just
introduced to simplify the case where i = m + 1, and replace cont (a’0, plus(mid(i, j),
1), 3, t) by cont(a’0, mid(i, jJ), 3, t).
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split int’ge(mid (i, 3), 1):

simplify without instantiation;

split int’ge(]j, i):

rewrite;

split j = mid(i, 3j):

rewrite;

split int’ge(j, mid(i, 3)):

split int’ge(j, i):

rewrite;

equality substitute cont(a’0, plus(mid(i, j), 1), J, t):

Exploiting the fact that, since all the other cases have now been simplified away, it is known
int’le(t, vec’extract(a’0, mid(i, 3j))):

rearrange;
split int’1le(t, vec’extract(a’0, mid(i, J))):
rewrite;

The information in the rule contpart2 is now introduced, instantiated as above, and again

rewrite is prevented from simplifying the information away.

use contpart2 a = a’0, k = mid(i, j), t = t;
disable contpart2;

Next, instantiate the quantified variables introduced from contpart2 for use in this formula:
instantiate i’0 = i, 30 = j;

The formula is now rearranged to highlight the fact that each of the hypotheses of the

introduced rule is known:

split and(int’ge(i, bot),
int’ge(top, 3j),
int’ge(j, i),
sort (a’0),
int’ge(t, vec’extract(a’0, mid(i, 3)))):

Finally, the introduced rule is used to simplify the last case where int’1lt(t,

vec’extract(a, mid(i, 3j))), thus completing the proof:

rewrite;
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